
1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Interactive Bike Lane Planning using Sharing
Bikes’ Trajectories

Tianfu He, Jie Bao, Sijie Ruan, Ruiyuan Li, Yanhua Li, Hui He, Yu Zheng

Abstract—Cycling as a green transportation mode has been promoted by many governments all over the world. As a result,

constructing effective bike lanes has become a crucial task to promote the cycling life style, as well-planned bike lanes can reduce

traffic congestions and safety risks. Unfortunately, existing trajectory mining approaches for bike lane planning do not consider one or

more key realistic government constraints: 1) budget limitations, 2) construction convenience, and 3) bike lane utilization. In this paper,

we propose a data-driven approach to develop bike lane construction plans based on the large-scale real world bike trajectory data

collected from Mobike, a station-less bike sharing system. We enforce these constraints to formulate our problem and introduce a

flexible objective function to tune the benefit between coverage of users and the length of their trajectories. We prove the NP-hardness

of the problem and propose greedy-based heuristics to address it. To improve the efficiency of the bike lane planning system for the

urban planner, we propose a novel trajectory indexing structure and deploy the system based on a parallel computing framework

(Storm) to improve the system’s efficiency. Finally, extensive experiments and case studies are provided to demonstrate the system

efficiency and effectiveness.

Index Terms—Data Mining, Distributed Computing, Urban Computing.

✦

1 INTRODUCTION

Cycling as a commonly used urban transit mode for daily
commute has been promoted by multiple governments all
over the world [1], [2] for several reasons: 1) it is an
affordable and environment-friendly transportation mode
for users; 2) it reduces road traffic congestions; and 3) it
is a healthy lifestyle [3]. As a result, building effective bike
lanes, demonstrated in Figure 1a, becomes a vital task for
governments to promote the cycling lifestyle. Well planned
and implemented bike lanes not only make cycling easier,
but also reduce the safety risks for both cyclists and drivers
of motor vehicles [4].

Traditional approaches to plan bike lanes in a city rely
mainly on empirical experience and surveys [5], [6], [7].
With widespread availability of GPS embedded devices,
more data-driven approaches on planning bike lanes have
emerged, e.g., [8], [9], [10]. However, existing works [8], [9],
[10] merely focus on summarizing commonalities of bike
trajectory data while ignoring the realistic constraints and
requirements faced by the government:

• Budget Limitations. There are costs to realizing a
bike lane on a road segment [11], [12], which may
include: 1) the space for creating bike lanes; and
2) the price of building bike lane railing, and painting

• Tianfu He and Hui He are with Harbin Institute of Technology. E-mail:
Tianfu.D.He@outlook.com and hehui@hit.edu.cn

Sijie Ruan and Ruiyuan Li are with Xidian University. Email:
sjruan94@gmail.com and liruiyuan@stu.xidian.edu.cn

Yanhua Li is with Worcester Polytechnic Institute (WPI). Email:
yli15@wpi.edu

Manuscript received TBD; revised TBD.

(a) An Example of Bike Lane (b) An Example of Inconvenient Plan

Bike Lane

Railing

Bike Lane

Signs

Shanghai

Hongqiao

Airport

Fig. 1. Motivating Examples.

signs (demonstrated in Figure 1(a)). Unfortunately,
governments often have limited budgets.

• Construction Convenience. To implement the bike
lanes, construction teams need to be dispatched to
construction zones, with the number of teams re-
quired also being a hard constraint. For the ease of
management, the government would like to avoid
spreading teams out to construction zones in far
reaching locations (e.g., red lines in Figure 1(b)
highlight the top-100 segments with the most bike
trajectories), and prefer to have them clustered, as a
limited number of connected components in the road
network.

• Bike Lane Utilization. As a public service, from the
government’s point of view, the objective of building
bike lanes is to increase the usability for more bikers
and cover more possible routes.

To incorporate these real world constraints, in this pa-
per, we propose a data-driven approach for planning the
bike lanes based on the massive trajectories collected from
Mobike 1. Mobike is a fully station-less bike-sharing system

1. https://en.wikipedia.org/wiki/Mobike

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

�� ���� ��

	��
��	��

������

����	�

��� ������ ������� �

��� ������

��� � ����
� ��� �����!

"#�$%	�

��� ������&��''

(�%	�!$��

Fig. 2. The Mobike Example.

currently deployed in many large cities in China, where it
serves over 25 million daily bike requests [13]. Compared to
the traditional station-based bike sharing systems, trajecto-
ries generated by Mobike have two distinctive advantages
for the bike lane planning problem:

• Realistic Travel Demands. Unlike many existing
station-based bike sharing systems, which require
the users to pick up and drop off bikes from desig-
nated stations, Mobike offers a more flexible system,
where the users can pick up and drop off their bikes
at arbitrary locations (Figure 2(a)). Even if there’s
still gap between user’s demand and supply position
especially when picking up (E.g. a user starts inside
an residential area but finds a bike at the gate), the
trajectories still capture the major part of realistic
travel demands.

• Rich Travel Information. A 3G communication com-
ponent and a GPS module are embedded on the
lock system in Mobike (demonstrated in Figure 2(b)),
which enables the users to find bikes with their
phones. It also keeps the track of the exact route
traversed by the users (Figure 2(c)), while traditional
station-based bike sharing systems can only provide
the check-in/out information.

In this paper, we design, implement and deploy a data-
driven bike lane planning system on Microsoft Azure, which
not only leverages the massive bike trajectories generated by
thousands of Mobike users, but also fulfills the constraints
requested by the government. The proposed system con-
tains two main components: 1) Pre-Processing, which pre-
processes the trajectories from Mobike users and maps them
on the road network; and 2) Bike Lane Planning, which takes
the user’s input (i.e., requirements from the government)
and provides bike lane suggestions. Going beyond the early
version of this work [14], we propose a novel trajectory
index structure (i.e., score index), and deploy the bike path
planning algorithm on the parallel computing platform,
i.e., Storm, which significantly improves the efficiency and
response time. Therefore, the urban planner can interact
with the system more effectively. The main contributions
are summarized as follows:

• We consider the bike lane planning problem with var-
ious construction constraints, and propose a flexible tuning
parameter to characterize the trade-off between the number
of covered users and the length of the continuously covered
bike trips. The problem proves to be NP-hard.

• We propose a greedy network expansion algorithm, which
provides an approximate solution to the bike lane planning

problem. To achieve a better effectiveness, we also propose
two different approaches to initialize the algorithm, which
work well for low and high budget scenarios, respectively.

• To improve the system efficiency, we employ a novel
trajectory score index to overcome the system efficiency bot-
tleneck, i.e. the beneficial score computing step in greedy
network expansion. Moreover, we design and implement the
system on the parallel computing platform, i.e., Storm, to
fit large scale trajectory data that cannot loaded into single
machine and further improve the system response time.

• We evaluate the proposed algorithms extensively over
one month Mobike trajectory data (i.e., from 9/1/2016 -
9/30/2016) from the City of Shanghai. We also provide an
extensive data analysis and discover many useful insights.
Moreover, on-field case studies are conducted to evaluate
the effectiveness of our bike lane recommendations.

• An online system with the real dataset is deployed and
available in public [15]. Finally, we collect the feedback from
the government officials, from which our system received
very positive reviews.

2 OVERVIEW

In this section, we model and define the bike lane planning
problem, and outline our solution framework.

2.1 Problem Definition

Given a road network graph G = (V,E) (where the vertex
set V represents intersections and the edge set E represents
all relevant road segments, our data-driven bike lane plan-
ning problem aims to discover a subset of edges E′ ⊆ E,
that follows three criteria: (i) construction budget constraint,
(ii) connectivity constraint, (iii) maximum usage benefit.

Construction budget constraint. There is a monetary cost
ei.c associated with each road segment ei, to convert a road
segment into a bike lane (e.g., building the railings and
clearing the space). On the other hand, the government has
an overall budget constraint B to building bike lanes, and
the total cost of the construction cannot exceed the overall
construction budget B, as highlighted in eq.(1) below.

∑

ei∈E′

ei.c ≤ B. (1)

Connectivity constraint. As has been outlined in the in-
troduction section, for the construction and management
convenience, the government prefers to deploy bike lanes
with up to k connected components (i.e., to be assigned to k

construction teams). The following inequality eq.(2) reflects
such a constraint:

C (E′) ≤ k, (2)

where C (E′) denotes the operator that counts the number
of connected components from an edge set E′.

Maximum usage benefit. The goal here is to maximize over-
all usage of deployed bike lanes, which should 1) facilitate
as many users as possible, and 2) cover more continuous
road segments along their trip routes. Note that continuous
road coverage in bike lane planning is crucial, as it increases
the users’ quality of experience (QoE). For example, a bike

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

���������	
�����
��

����������

�������������
�����

��������
�����

����������������������

��������
�����

�� ������

��������

�)������

Fig. 3. Motivation of Trajectory Score Function.

user travels on a path (i.e., e1 → e2 → e3), shown as blue
dotted lines in Figure 3(a)). Though both of the bike lane
plans(Figure 3(b) & (c)) covers the same length(2km) of his
trip, Plan 2 is preferred by users as it provides continuous
2km’s experience, while the trajectory coverage of Plan 1 is
broken into two disconnected segments. The QoE would get
even worse when there were more disconnected segments.

Unfortunately, these two objectives (i.e., serving more
users vs. covering longer and continuous trips) usually
conflict with each other, as user trips usually have different
destinations. Hence, we propose a flexible score function for
decision makers to adjust their preference between the two
objectives for a trajectory tri:

S(sj .l) = α
sj.ℓ

min(e.ℓ) ×
sj.ℓ

min(e.ℓ)
(3)

tri.g =
∑

sj∈Si

S(sj .l), α ≥ 1. (4)

where tri.g is the beneficial score for trajectory tri, Si is the
set of continuous road segments that overlap with trajectory
tri in the path plan E′, sj is one continuous road segments
in set Si. S is the function to calculate the score of each
continuous road segment sj , where

sj .ℓ

min(e.ℓ) normalizes the

length of the continuous road segment sj ∈ Si (where
min(e.ℓ) is the minimum length of the road segment in the
network), with the guarantee that its value is no less than 1,
and α is the tuning parameter to set the preference on the
number of covered users versus the length of continuous
coverage. The reason for designing a score function using
the exponential function of the normalized length is that
when α > 1, the continuous segment gets a higher score.

Otherwise, without the exponential function α
sj.ℓ

min(e.ℓ) , Lane
Plan 1 and Lane Plan 2 will have the same score. A smaller α
indicates that more preference is given to the amount of user
coverage (e.g., α = 1 means that we do not care about the
continuous length coverage, and two path plans in Figure 3
have the same beneficial score), while a larger α means that
the longer continuous length coverage of the user trips is
preferred.

Then, since the motivation is to improve the overall
experience of all the users’ trips, we calculate the overall
beneficial score of a bike lane plan E′.g by aggregating
the scores of all the trajectories Tr that overlap with road
segment set E′:

E′.g =
∑

tri∈Tr&tri∩E′ 6=∅

tri.g. (5)

We formalize our bike lane planning problem as follows.

Problem definition. Given a set of trajectories Tr, a road
network G = (V,E) with a cost value ei.c on each edge ei, a
tuning parameter α, a value k, and a total construction budget B,
we want to find a set of edges E′ ⊆ E, which maximizes the total
beneficial score g, and fulfills two constraints: 1) the total budget
is no more than B; and 2) the number of connected components
in E′ is less than k. Formally, it is represented as an integer
programming problem:

max: E′.g, s.t.:
∑

ei∈E′

ei.c ≤ B, C (E′) ≤ k. (6)

Such a problem of finding k budget constrained con-
nected components with maximum beneficial score is NP-
hard as proven in Lemma 1 below.

Lemma 1 (NP-Hardness). Finding k budget constrained
connected components in a graph with the maximal
beneficial score is NP-hard.

Proof: We reduce our problem from the 0-1 knapsack
problem. Recall that in a 0-1 Knapsack problem, we are
given a set of n items, each with a weight wi and a value
vi, along with a maximum capacity W . Our goal is to find
an S ⊆ [n] to maximize

∑
i∈S vi subject to the constraint∑

i∈S wi ≤ W .
Given a 0-1 Knapsack problem, we construct a k-budget

constrained connected component problem instance as fol-
lows. First, an item corresponds to an edge (road segment).
The weight wi (value vi) of an item corresponds to the
construction cost (beneficial score) of the edge it associates
with. Next, we set k = |E| so that the component constraint
becomes trivial; we set α = 1 so that we do not care about
the continuous length coverage.

One can see that E′ is feasible in the k-budget con-
strained connected component problem if and only if the
“items” in E′ is feasible in the knapsack problem. Con-
sequently, the optimal value for the knapsack problem
coincides with that of the k-budget constrained connected
component problem, which completes our proof.

Given it is an NP-hard problem, we develop a greedy-
algorithm based heuristic to tackle the issue.

2.2 System Framework

Figure 4 gives an overview of our system, which consists of
two main components:

Pre-Processing. This component takes the bike trajectories
and the road network and performs three main tasks:
1) Trajectory Data Parsing, which removes the outlier GPS

*+,-./
0123/45+1-/6

7+28 9/5:+1.

0123/45+1;
*2<=

*254>-?@

ABCDABEFCGGHIJ

K?L/15/8
K?8/M

N+?651O45-+?

0123/45+1;
P252

Q216-?@

RHSC TUIC AVUIIHIJ

0+<=. ,26/8
K?-5-2W-X25-+?

Y<25-2W
NWO65/1-?@

K?-5-2W-X25-+?

ZB[UI
AVUIICB

\]^]_`a`^
b`aacde

fcg` h]d`
i`jk__`dlm

nopqrstpuvq
wrxtqyy

0123/45+1;
Y4+1/ K?8/M

z N+{<O5-?@

Y5+1{
P/<W+;{/?5

|}~~�� �~���}� ���������

������~��� ���}��~�~��

Fig. 4. An Overview of System.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

��� ������� �������� ��� ���� �� ¡ ¢������£ ¤���¡�¥

¦§¨©ª«

¦¬ª¬®¯

¦°®±±¯²

³ª´´

¦§¨©ª«

¦¬ª¬®¯

Fig. 5. Spatial Insights of Mobike Data.

points; 2) Trajectory Map-Matching, which projects the bike
trajectories onto the corresponding road segment; and 3) In-
verted Index Construction, which builds an index to speed up
the lookup process of retrieving trajectories based on road
segment IDs (detailed in Section 3).

Bike Lane Planning. This component takes the user’s pa-
rameters, e.g., the total budget, number of connected com-
ponents, and the α value, and outputs the bike lane recom-
mendation results. If the user is satisfied by the results, pa-
rameters can be tuned to get a new set of recommendations.
This component contains two main modules: 1) Greedy Net-
work Expansion, where we propose two different approaches
to initialize the network expansion (detailed in Section 4);
and 2) Efficiency Improvement, where we propose a novel
trajectory score index to speed up the planning algorithm
and deploy the system on the parallel computing platform,
i.e., Storm (detailed in Section 5).

3 PRE-PROCESSING

Pre-processing takes the road network and the trajectories
as input, and performs the following three tasks:

Trajectory Parsing. This step cleans the raw trajectories from
Mobike by filtering the noisy GPS points using a heuristic-
based outlier detection method [16].

Trajectory Map-Matching. In this step, the system maps
each GPS point onto the corresponding road segment. We
employ a revised version of an interactive-voting based map
matching algorithm [17], where the speed constraint of the
road segments is not used.

Inverted Index Construction. In this step, the system builds
the inverted index for each road segment, recording the tra-
jectory IDs passing it. In this way, we can speed up the road
segment-based trajectory look-up. The index construction
process is done in parallel on Microsoft Azure [18].

4 GREEDY NETWORK EXPANSION

4.1 Greedy Network Expansion Framework

Main Idea. The intuition of the greedy network expansion
algorithm is to expand a set of k starting road segments in

Algorithm 1 Greedy Network Expansion Algorithm

Input: Road Network G = (V,E), Inverted index I , Trajec-
tory Dataset Tr, Total budget B, tuning parameter α, and a
value k.
Output: Result road segment set E′.
//Stage 1: Initialization

1: Road Segment Set E′ ← k starting road segments
2: Candidate set C ← adjacent road segments of E′

3: Remaining Budget B ← B −
∑

ei∈E′ ei.c

//Stage 2: Network Expansion
4: while Budget B > 0 do
5: MaxGain← 0; enext ← ∅
6: for ei ∈ Candidate set C do
7: if ei.c < B then
8: Retrieve trajectories Tr′ from I based on E′ ∪ ei

9: Get beneficial score difference per cost ∆g = g′−g

ei.c

10: if MaxGain < ∆g then
11: MaxGain = ∆g; enext ← ei

12: E′ ← E′ ∪ enext; B ← B − enext.c
13: C ← C∪ none-selected adjacent edges of enext

//Stage 3: Termination
14: return E′

the network. This is inspired by the two key insights dis-
covered in the dataset, namely spatial hot spots and star-like
mobility patterns: Spatial hot spots. Figure 5(a) shows the two
hot spots with the highest number of trip starting locations,
where the upper side reflects a subway station, and the
lower side illustrates a popular shopping mall. The intuition
behind the observation is straightforward: although the mall
is very popular, it is not close to any subway stations, which
makes cycling the best option; similarly for the terminal
station, the fastest & most economic option to get home from
there is cycling.
Star-like mobility patterns. We further investigate travel di-
rections around spatial hot spots, and we discover that
the bike trips go to different destinations from the same
starting location, just like multiple edges with one shared
end, namely, a star-like mobility pattern, as demonstrated
by the arrows in Figure 5(b). Taking these observations into
considerations, our greedy-based bike lane planning starts
from the hotspots and expands greedily to generate the star
patterns. The algorithm extends the incremental network
expansion algorithm in road network, e.g., [19], [20]. The
algorithm has three phases:

• Stage 1: Initialization. The algorithm starts by se-
lecting k starting road segments. In this way, we
can guarantee that the final road segment recom-
mendation produced by the algorithm fulfills the
connectivity constraint, i.e., does not generate more
than k connected components.

• Stage 2: Network Expansion. In this stage, the algo-
rithm runs iteratively. In each iteration, the algorithm
selects the best road segment (i.e., with the highest
the beneficial score gain per cost) to the result set E′

and adds its none-selected adjacent segments to the
candidate set.

• Stage 3: Termination. The algorithm terminates
when budget limit B is met, and then returns the
resulting road segment set E′ as the recommended
bike lane plan.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

eµ¶

eµ

e·

e¸ e¹

eº

e»

e¼

e½

eµµ

e¾

eµ·
eµ¸

eµ

e·

e¸ e¹

eº

e»

e¼

e½

eµµ

eµ¶

e¾

¿ÀÁ ÂÃ ÄÃÅÆÅÇÈÅÉÇÆÅÊÃ ËÌÇÍÎÈÏ

ÐÑÒÓ ÔÕ Ö× ÖØ ÖÙ ÖÚ ÖÛ ÖÜ ÖÝ Ö×Þ Ö××

ß àáâã ä å æ ç è å æ é æ

êëìí î î î î æ î ä æ î

¿ÇÁ Â ïÇÃðÅðÇÆÏ ñÏÆ ËÌÇÍÎÈÏ

¿òÁ ÂÃ óÏÆôÊõö ËÌÎÇÃ÷ÅÊÃ ÄÆÏõÇÆÅÊÃ

Fig. 6. Greedy Network Expansion Example.

Algorithm Design. Algorithm 1 gives the pseudo-code of
our greedy network expansion algorithm. In the initialization
stage, the algorithm first selects k starting road segments
into the resulting set E′, puts all adjacent road segments
of the start segments into candidate set C, and updates the
budget value by subtracting the total cost of the starting
road segments (Line 1-3).

In each iteration of the network expansion stage (Line 5-
13), the algorithm checks each road segment ei in the
candidate set C. If the cost of the road segment is smaller
than the remaining budget, the algorithm retrieves all the
trajectories Tr that has been covered by the road segment
ei and the result road segment set E′ (Line 8). After all the
covered trajectories are retrieved, we calculate an updated
beneficial score g′ based on Equation 5. Then, we calculate
the corresponding beneficial score gain per cost (Line 9).
During the process, we keep track of the road segment enext,
which has the maximum beneficial score gain per cost in the
iteration. enext is inserted in to the resulting road segment
set E′, the remaining budget is updated by subtracting the
cost of the selected road segment enext.c. When there’re ties
on ∆g between candidates, we greedily select the one with
the maximum total score that meets the remaining budget
constraint. Road segment enext is removed from candidate
set C, and all of its none-selected adjacent segments of enext
are inserted in the candidate set C for further iterations
(Line 10- 13).

Finally, when all the budget is used up, the algorithm
terminates, and the road segment set E′ is returned as
the recommended plan. Note that although there are many
works (E.g. [11], [12]) that discuss about budget estimation
of lane planning, our work simply chooses the road length
as budget. Nevertheless, in our solution, the budget can be
defined as any scheme, such as price, length and etc.

Example. Figure 6 gives an example of the greedy network
expansion algorithm. In the initialization stage, two starting
road segments are selected (marked in red), and all of their
adjacent segments are inserted in the candidate set (marked
in blue). During the network expansion stage, in the iteration,
we calculate the beneficial score gain difference for each
segment in the candidate set (illustrated in Figure 6(a)),
based on Equation 5. After that, we divide the beneficial

(a) Result of Top-k Initialization (b) Top-k Start Segments

Top 1

Top 2

Top 4

Top 3

Top 5

øùúûüú ýþÿ

��ÿ�ùþú ÿ�þ�

ý��ù
�ú�ùÿ� ���ÿ

��þ��ùú�
ÿ���

�ÿ��þ�ù��

ÿ�þ�
ý��ù
�ú�ùÿ� ���ÿ

Zoom in

Fig. 7. Top-k Initialization Example.

score difference by the cost of each segment and select the
highest one to expand the network, which is e8 in our
example. Then, the adjacent segments of e8 are added as
the new candidates (i.e., e12 and e13 in Figure 6(c)). The
algorithm terminates when the budget is used up.

Analysis. As demonstrated in the example, it is clear that
the performance of the final results E′ is highly determined
by the selection of the starting road segments. As a conse-
quence, finding an effective method to perform initialization
becomes a vital task in our greedy network expansion
algorithm.

4.2 Top-k based Initialization

Main Idea. The most straightforward method is Top-k Ini-
tialization, which essentially selects the highest ranked k

segments based on the beneficial score per cost (i.e., ei.g

ei.c
), as

the starting segments for network expansion. The intuition
behind this approach is that these road segments usually
represent the spatial hot spots, which should always be
included in the final result.

Example. Figure 7(a) gives an example result of greedy
network expansion with top-k based initialization, with
k = 5. The recommended bike lanes are marked in red in the
figure, which form one large set of connected components.
The reason the result contains only one connected compo-
nent, rather than five (i.e., k value) is that the top-5 highest
ranked segments are connected with each other. Figure 7(b)
is the detailed view of the boxed area in Figure 7(a), where
the selected five starting road segments are marked in green
and blue, which form two groups (i.e., {Top 1, Top 2,
Top 5} and {Top 3, Top 4}). The first group contains the
road segments between a major residential area and nearby
shopping malls/factories, while the second group contains
the road segments near the terminal station for subway Line
13. The reason why the top ranked segments are usually
close to each other, is that a large amount of trajectories may
share a lot of road segments, as they traverse from or to the
same location (e.g., a subway station or a shopping mall).

Analysis. The top-k based initialization approach guaran-
tees that the algorithm will never miss any segment with
the highest beneficial score per cost. However, as most of
the top-k ranked segments are very close to each other, it
can only expand with a much lower number of connected
components in the network, which limits the search space
in the candidate set and may miss some important areas,
especially when the budget B is large.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

��������	
�������
��	�

�	��
�����

��������	
������	��
������

����������������

���������

�	��
��	�

���	��

����������
������
��

���
����
���

���������

��������

���������

��������

���������

��������

Fig. 8. Spatial Clustering based Initialization.

4.3 Spatial Clustering-based Initialization

In order to include more spatially diversified starting loca-
tions in the initialization stage and be more effective when
the budget is larger, we take advantage of spatial clustering
techniques to select the starting road segments.

Main Idea. The intuition behind the spatial clustering-based
initialization is from the observation of the trajectory heat
map (i.e., Figure 8(a)), which visually has some rough
clusters over the space. In this way, we can avoid the
drawbacks of the top-k based initialization, which has the
starting segments connected to each other and limits the
search space. This method has two main steps:

• Candidate Selection. In this step, we select a sub-
set of road segments with high ranks (e.g., top 1%
ranked segments in our implementation based on the
score per cost), as the candidates for clustering. The
reason for selecting a subset of road segments for
clustering is to remove the road segments that will
never be in the final result and reduce computational
cost.

• Spatial Clustering. In this step, the candidate road
segments are clustered based on an agglomeration
hierarchical clustering method, e.g., [21]. After that,
the highest ranked road segment in each cluster is
selected as a starting segment.

The hierarchical-based clustering method is employed
in our system, as it does not need to tune the clustering
parameters (e.g., in DBSCAN [22]) and it always generates
stable results (unlike it is in K Means [23]). Thus, it is more
intuitive for government users that are not familiar with
clustering technical details.

Example. Figure 8(b) and (c) gives an example of the execu-
tion results of spatial clustering-based initialization, where
k = 5. In the first step, we compute the clusters generated by
our algorithm, i.e., Figure 8(b). After that, the highest ranked
road segments are selected as the starting segments, which
are the black segments in Figure 8(c). It is interesting to note
that four of the starting segments are at subway stations.
The recommended paths actually cover the neighborhood
of six subway stations, as illustrated in the figure.

Analysis. Compared to the results generated by the top-k
initialization method, spatial clustering based initialization
clearly has better diversity and coverage. The main reason
is that after the spatial clustering step, the starting segments
are no longer connected with each other. As we will show in
our experiments, with more budgets, the spatial clustering-
based initialization method is more effective.

��� ����	 �������� �����

��

�

�!

"#�$ %

"#�$ &

"#�$ '

"#($ '

)*+, -./01 23 4 5,61

777 777 777

777

777
89:

;:

;<

;=

;> ;? ;@

A/B -./0,CDE.F -.G ACB -./01 5CE., 2H*,I EJ -.G

KLMMNOP QRSN
TUON VWUO

5,61 X Y Z [\]

^,H+D_

,*+,

CE`HD

;: ;@;?;>;<;=

a �!bc a �d�ebc �d�ebc a

a % a ' ' a

Fig. 9. Index Structures in Efficient Traj. Score Computing.

5 EFFICIENCY IMPROVEMENT

In each network expansion iteration, the score computation
(i.e., the beneficial score difference per cost for each road
segment) is dependent to the current resulting set E′ when
α > 1, therefore, the processing of a large number of trajec-
tories is unavoidable. Moreover, it may take a large number
of expansion iterations, when the budget is large. As a result,
the response time of Greedy Network Expansion algorithm
can be prohibitively long, e.g., several minutes for a typical
bike lane planning request over one-month’s trajectory data,
which incurs the inconvenience for the urban planners to
interact with the system (e.g., setting different k and budget
values).

To improve the system efficiency and clear the burdens
for urban planners, we develop two techniques: 1) Efficient
Trajectory Score Computing, which significantly improves the
efficiency on the score computing step by introducing a
novel trajectory score index; and 2) Parallel System Deployment,
which distributes the computational overhead to multiple
computing nodes to reduce the system response time.

5.1 Efficient Trajectory Score Computing

A naive approach to execute the score computing step con-
tains the following three steps: 1) retrieving all the trajecto-
ries based on the candidate road segment; 2) scanning each
retrieved trajectory and extracting all the connected road
segments; and 3) calculating the score for each connected
road segment based on Equation 3 and adding it to the total
score.

Clearly, the naive approach for score computing has two
drawbacks: 1) the entire trajectory data needs to be fully
scanned to identify the connected road segments; and 2) the
computed score for each connected road segments is not
reused, even if the connected road segment is not changed
with the newly added candidate segment. As a result, the
first drawback incurs significant redundant I/O access, and
the second drawback introduces much redundant comput-
ing. To this end, we propose a novel trajectory score index
and an efficient score computing algorithm to overcome
these drawbacks and improve the system efficiency.

5.1.1 Data Structure

We first introduce two data structures used in the algorithm:

Inverted Trajectory Index. The index is a hash map, where
the key is the edge ID and the value contains a list of trajec-
tory information (including trajectory ID and the sequential
ID of the edge in the trajectory).

Figure 9(b) gives an example of the trajectory inverted
index, where each edge is linked to a list of trajectory

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

information, including: 1) Tri, which is the trajectory ID
that passes the corresponding edge, and 2) sequential number,
which is the position of the edge in Tri.

Trajectory Score Index. Each trajectory Tri maintains its
own trajectory score index TSi during the process. The
trajectory score index is a hash map, where the key is the
sequential ID of the edge passed by the trajectory, and the
value contains three attributes: 1) edge ID; 2) length, which
records the length of the continuous road segments with
the current bike lane plan that involves this edge; and
3) count, which is the number of edges of the continuous
road segments with the current bike lane plan that involves
this edge. Note that, since the length and count are related
to the current plan, the score index is updated as the plan
expands.

Figure 9(c) gives an example of the trajectory score
index TS1 of Tr1 with the current bike lanes as shown in
Figure 9(a). The length and count for the edges, TS1.seq[1],
TS1.seq[3], and TS1.seq[4], are 0, as they are not covered
by the current bike lane plan (shown in red). On the other
hand, the length and count of TS1.seq[2] are e2.l and 1,
respectively, as e2 is covered solely by the current bike
lane plan. Similarly, the length and count of TS1.seq[4] and
TS1.seq[5] are e4e5.l and 2, as e4 and e5 are covered by a
continuous bike lane plan.

The modified inverted trajectory index is used to avoid
the redundant full scan of the trajectory. With the trajectory
sequential number in the index, we can locate the newly
added candidate road segments in the trajectory. The trajec-
tory score index is used to speed up the score computation, by
keep track of the partial results of the score computing, i.e.,
the total length of the continuous segments in each iteration
of the network expansion. The length of the continuous
segment is stored rather than the actual score in the index, as
the new score cannot be generated directly by the previous
scores directly, due to Equation 3.

5.1.2 Efficient Trajectory Score Computing

Main Idea. The intuition of the efficient score computation
algorithm focuses on computing only the incremental score,
i.e. ∆g. In other words, for each candidate road segment, we
use the invert trajectory index to identify the trajectories that
are covered by the road segments and their corresponding
positions. After that, by using the trajectory score index,
we identify the length differences caused by the candidate
segment and returns the incremental score. There are three
possible cases, when the beneficial score of a trajectory is
affected by the candidate road segments:

• Case 1: None Connection. In this case, the candi-
date segment does not extend any of the existing
continuous road segments from its previous or next
sequential neighbor in the trajectory, as shown in
Figure 10(a). As a result, the incremental score is
calculated directly based on the length of the edge
e4 using Equation 4.

• Case 2: Single Connection. In this case, the can-
didate segment extends a set of existing continu-
ous road segments from either its previous or next
sequential neighbor of the trajectory. Figure 10(b)
shows an example, where the candidate segment

fg

fh

fi

fj fk fl

mno pnqr st

uvwr pvwwrxyzvw

{|zqyzw} ~�nw fg

fh

fi

fj fk fl

m�o pnqr �t

�zw}�r pvwwrxyzvw

fg

fh

fi

fj fk fl

mxo pnqr �t

�v���r pvwwrxyzvw

pnw�z�nyr

�r}�rwy

{|zqyzw} ~�nw

pnw�z�nyr

�r}�rwy

{|zqyzw} ~�nw

pnw�z�nyr

�r}�rwy

Fig. 10. Three Cases of Candidate Segment Addition.

Algorithm 2 Efficient Trajectory Score Computing

Input: Trajectory Dataset Tr, Candidate Segment ec, In-
verted index I , Trajectory score index TS.
Output: The incremental score ∆g.

1: ∆g ← 0
2: Retrieve the list L with {trajectory & sequence} from I [ec]
3: for each {trajectory i, sequence j} ∈ L do
4: switch Check TSi.seq[j − 1] & TSi.seq[j + 1] do
5: case None Connection
6: ∆g+=S(ec.l)

7: case Single Connection
8: if Si.seq[j − 1].l! = 0 then
9: ∆g+=S(ec.l+TSi.seq[j−1].l)−S(TSi.seq[j−1].l)

10: else
11: ∆g+=S(ec.l+TSi.seq[j+1].l)−S(TSi.seq[j+1].l)

12: case Double Connection
13: g′ = S(TSi.seq[j + 1].l) + S(TSi.seq[j + 1].l)
14: ∆g+=S(ec.l+TSi.seq[j− 1].l+TSi.seq[j+1].l)− g′

15: return ∆g

extends a continuous road segment plan based on
its previous sequential neighbor. In this example,
the incremental score is calculated by subtracting the
score of e2 from e2e3.

• Case 3: Double Connection. In this case, the can-
didate segment essentially connects two sets of con-
tinuous road segments, as shown in Figure 10(c). In
this example, the incremental score is calculated by
subtracting the score of both e2 and e4, from e2e3e4.

As a result, we are able to reduce the computational
complexity of the score computing from O(N) (i.e., fully
scan of a trajectory) to O(1) (i.e., just looking at the statistics
of the neighbors). Also, we do not need to calculate the
part of the existing continuous road segments if they are
not affected by the candidate segment.

When a candidate segment is selected by the algorithm,
i.e., getting the most beneficial score gain per cost in the
greedy network expansion algorithm. The trajectory score index
is updated accordingly: 1) we use count values of the neigh-
bor edge to identify the update range; and 2) for all the
edges in the update range, all their counts and lengths are
updated for the further expansion.

Algorithm. Algorithm 2 provides the pseudo code of the
proposed efficient score computing method. The algorithm
first initializes the beneficial score difference ∆g as 0, and
then retrieves the list of trajectory ID and the corresponding
sequential number pairs L from the inverted trajectory index
I(Line 1- 2).

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

���

��

��

��

�� �� ��

��� ���������� ��� ��� � ¡�¡�¢ ����£ ¤���� � ¥�¦ �§ ���

¨©ªª«¬
®¯°¬

¤�±£ ² ³ ´ µ ¶ ·

¢� ¸�¹

�¥¸�

��º �

»¼ »½»¾»¿»À»Á

Â »ÁÃÄ Â »¿»¾ÃÄ »¿»¾ÃÄ Â

Â Å Â Æ Æ Â

��� ÇÈ¥���¥ ����£ ¤���� � ¥�¦ �§ ���

¤�±£ ² ³ ´ µ ¶ ·

»¼ »½»¾»¿»À»Á

»Á»ÁÃÄ »Á»ÁÃÄ Â »¿»¾ÃÄ »¿»¾ÃÄ Â

Æ Æ Â Æ Æ Â

¢� ¸�¹

�¥¸�

��º �

¨°¬ÉÊÉ°«
Ë«ÌÍ«¬

Fig. 11. Example of Efficient Trajectory Score Computing & Update.

For each trajectory ID and sequence number pair {i, j}
in the list L, we calculate the incremental score and added
it to ∆g. We get the trajectory score index TSi based on the
trajectory ID i, and check the neighbors of the sequential ID
j, i.e., TSi.seq[j − 1] & TSi.seq[j + 1], to see if any of them
is covered by the existing bike lane plan (Line 4- 14).
There are three cases: 1) none connection, where we directly
add the score introduced by the candidate segment ec
based on Equation 3 to ∆g; 2) single connection, depend-
ing on the candidate edge extends the existing bike plan
from its previous edge (TSi.seq[j − 1]) or the next edge
(TSi.seq[j−1]), we first add the overall score (S(TSi.seq[j±
1].l + ec.l)) and then subtract the score of the previous
continuous segment(S(TSi.seq[j ± 1].l); and 3) double con-
nection, where we first calculate the old beneficial score g′,
as S(TSi.seq[j − 1].l) + S(TSi.seq[j + 1].l). After that, we
subtract the old beneficial score from the new total score, as
S(ec.l + TSi.seq[j − 1].l+ TSi.seq[j + 1].l)− g′.

Finally, when all the the trajectory ID and sequential
number pairs are processed, the final incremental beneficial
score ∆g is returned (Line 15).

Example. Figure 11 gives an example of calculating the
incremental score ∆g and updating the corresponding tra-
jectory score index. In Figure 11(a), the blue arrow indicates
the trajectory Tr1, the existing bike lanes are marked in red,
and the candidate segment is marked in black. Figure 11(b)
demonstrates the initial trajectory score index of trajectory
Tr1, where the length and count fields are filled based on
the existing bike lanes.

When candidate segment e1 is selected to calculate the
incremental score, the algorithm looks at the its sequential
neighbors and identifies that its next segment is covered
by the existing bike lane. Then, the incremental score is
calculated using the equation in single connection case. The
incremental score is sent back to the greedy expansion algo-
rithm to select the best candidate for the further iteration.

If a candidate segment is selected as the best one in
the greedy expansion algorithm, e.g., in this case e1, the
trajectory score index is updated. Essentially, we identify the
update range based on the count value of the neighbor
edges, where in this example, we only need to update one
neighbor edge e2, as its count was one. And for the cases
when count >= 2, since the algorithm only accesses the two
ends of a continuous segment (Algorithm 2, Line 4), we only
need to update length and count of the two ends without loss
of correctness. In this way, the score index updating is also
O(1).

5.2 Parallel System Deployment

With the efficient score computing method, the greedy net-
work expansion algorithm still needs to compute a huge

ÎÏÐÑÒÓ

ÔÕÖÒ

×ÕÓØ

ÔÕÖÒ

ÙÚÛ

ÔÕÖÒ

ÜÝÞ ß àÝáâã äÝåÝææãæ çèéêëìíîï ðãñíïî ÜòÞ äåèêèñãó äÝåÝææãæ çèéêëìíîï ðãñíïî

×ÕÓØ

ÔÕÖÒ

ôõö÷øùúûõüøý þ
ÿö��ü�öúø �ø��ø�ú

�öõúüö�
�ùûõøý

ôûúö� �ùûõø

... ÎÏÐÑÒÓ

ÔÕÖÒ

ÙÚÛ

ÔÕÖÒ

��� ÿö��ü�öúø
�ø��ø�úý

�öõúüö� �ùûõøý �ûõ
��� ÿö��ü�öúøý

�øýú ÿö��ü�öúø �ø��ø�ú

...

×ÕÓØ

ÔÕÖÒ

×ÕÓØ

ÔÕÖÒ

Fig. 12. Parallel System Design.

number of scores to get the result, as: 1) the number of
trajectories in a candidate segment is huge, as the algorithm
is initialized in the urban centers; and 2) the number of
expansion iterations is also enormous, especially when we
have a large budget. In other words, to generate a bike
lane plan, a large number of trajectory score computations
needs to be processed. Fortunately, the score computation
within the same expansion iteration is independent to each
other. As a result, the intuition here is to distribute the com-
putational and I/O overhead of the score computations to
multiple computing nodes in a parallel computing platform
to reduce the response time.

We adopt Apache Storm to implement the distributed
greedy network expansion algorithm. The main reason to
choose Storm over Spark is that after each expansion iter-
ation, a lot of information in the trajectory score index needs
to be updated. To realize this process in Spark, we need to
create a new RDD (Resilient Distributed Dataset) in every
expansion iteration, which leads to a large I/O overhead.

5.2.1 System Design

A naive parallel system design is shown as Figure 12, which
directly computes the scores for each candidate segments in
parallel (i.e., Line 7- 11 in Algorithm 1), with the following
steps: 1) the master node checks one candidate segment by
sending the affected trajectories to different worker nodes;
2) each worker node computes a partial beneficial score
based on the sub-set of trajectories and passes it to the sum
node; and 3) the sum node gets all the partial scores and
calculates the total score and sends it back to the master
node, until all the candidates are examined or the budget is
used up.

However, there are two major drawbacks on the naive
parallel system design, which significantly undermine the
system efficiency:

1) Huge Data Transfer. In the naive design, trajectory
data is transferred along with the candidate segment
to worker nodes. Although high speed networks
are employed in the parallel computing cluster, the
overhead of data transferring is significant, when
the trajectory data set is massive.

2) Massive Cycling Iterations. In each iteration, only
the total score of one candidate segment is cal-
culated and returned. As a result, the algorithm
needs to perform massive cycling iterations(i.e., the
number of network expansions times the number
of candidate segments at each iteration) to get the
final result. The response time can be prohibitively
slow, as each iteration introduces the waiting time
on 1) getting partial scores from all worker nodes;
and 2) network delays between each two steps.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

To this end, we propose an advanced parallel computing
design, as demonstrated in Figure 12(b). Two improvements
are employed: 1) instead of passing the trajectory data with
the candidates, the trajectory data is pre-loaded and built
into the trajectory score index in worker nodes. Moreover, to
achieve a balanced workload, the trajectory data is divided
temporally, e.g., on the daily basis; and 2) in each iteration,
we pass all the candidate segments together to the worker
nodes, rather than one by one. In this way, we significantly
reduce the number of iterations to be the number of network
expansions.

5.2.2 Storm Implementation

However, Storm is not designed to process the iterative
tasks, as it is a parallel streaming system and does not
support any circles in its topology. To this end, we modify
the original Storm architecture and include a new mes-
sage queue to store the complete confirmation of the score
computations from different worker nodes (or bolts) and
pass the overall score back to the master node (or Spout).
Moreover, to avoid the massive data transfer during the
process, we preload the partitioned trajectory data in worker
nodes, before the user request.

In this sub-section, we first give an overview of the
newly designed Storm framework. After that, we describe
the two phases in the implementation: 1) System Initial-
ization, and 2) Service Providing. Finally, we present some
lessons learnt during the implementation.

System Overview. Figure 13 gives the Storm topology of
our system, which consists of following four parts:

1) ResultMQ. It is a message queue service (i.e., Piv-
otal RabbitMQ) illustrated at the top of the figure.
ResultMQ gets the completion confirmation from the
Report Bolt and pass the best segment candidate in
each iteration to Command Spout. In this way, we
are able to implement the iterative greedy network
expansion algorithm in Storm.

2) Command Spout. As demonstrated as the yellow
box in the figure, Command Spout distributes the
computational workloads to the different Work Bolts.
Moreover, it also monitors the best candidate re-
ported from the report node in each iteration.

3) Work Bolt. As illustrated as the blue boxes in the
figure, Worker Bolts are used to load the partitioned
trajectory dataset during the system initialization,
and performs the distributed trajectory score com-
putation during the service providing.

4) Report Bolt. It is shown as the light blue box in the
figure. Report Bolt is used to summarize the score
computation results of candidates from different
Worker Bolts in each iteration and inserts the best
candidate to the ResultMQ.

System Initialization. To achieve the load balancing among
different work bolts during the trajectory score computing
tasks, we partitioned the trajectory data based on their
temporal information (with dates in our implementation),
and organize them as different HDFS files. During the ini-
tialization, command spout sends out the file names randomly
(i.e., ShuffleGrouping) to worker bolts, asking them to load the

�������

���	

����

���

���� ���

��� ���

����� !"#$

...

��%	�&

'���

(((

)*+, -./0*123 41+5.6/*17.3

89:;

�!!<�"�=>?@ABCD EFG
HI�JJ!�<�"�=>?@

89:K 89:L

MNCOPQPRSG
�!!<�"�=>?@

��&	�
TU

Fig. 13. Storm Topology.

partitioned trajectory data from the corresponding files and
build indexes (i.e., inverted trajectory index and trajectory score
index) for the partial trajectories.

Service Providing. When a bike lane planning request
comes, the CommandSpout first selects the start segments
based on spatial clustering or top-k methods. After that,
the greedy expansion iterations starts: 1) all the candidate
segments are broadcast (i.e., AllGrouping) to the worker bolts;
2) in each work bolt, the incremental beneficial scores for all
the candidate segments are calculated based on the partial
trajectory data and sent to the report bolt; 3) report bolt
summarizes the scores and inserts the best candidate to
the ResultMQ; and 4) CommandSpout updates the remaining
budget. If the budget is used up, CommandSpout returns the
set of best segments as the plan to the user. Otherwise, the
iteration continues.

Lessons Learnt. In the actual implementation, our system
still suffers from significant delays between different nodes
in the Storm topology (e.g., between the CommandSpout and
Work Bolts. We look into the communication techniques used
in Storm and noticed that internal message queues like
Netty or LMAX Disruptor are used. Moreover, to reduce the
the I/O cost in the streaming event scenarios, these message
queues are implemented with buffers. When a tuple is
transferred, it is firstly stored in the buffer, rather than
emitting it directly to the next bolt. The buffer is flushed
out periodically, or the buffer is full.

However, in our design, in many cases, spout only sends
out very few number of tuples, e.g., CommandSpout only
sends a list of candidate segments to the Work Bolts. As
a result, in default, the communication among nodes only
happens after the flushing time out. The problem is am-
plified by the number of iterations executed during the
network expansion algorithm.

As a result, we disable the buffer mechanism by setting
the size of the buffers to 1, i.e. the tuple is sent out as
soon as it is generated. This optimization speeds up the
average tuple transferring time by an order of magnitude
from 106ms to about 2ms.

6 EXPERIMENTS

In this section, we conduct extensive experiments to
evaluate the effectiveness of our system. We first describe
the dataset used in the paper. Then, we provide a detailed
analysis on the mobility statistics of the Mobike trajectories.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

4 8 12 16
0

1

2

3

4

5
%

km

(a) Trip Length Distribution.

10 20 30 40 50 60 70
0

1

2

3

4

5

6

7
%

min

(b) Trip Duration Distribution.

04:00 08:00 12:00 16:00 20:00
0

1

2

3

4

5
%

(c) Trip Temporal Distribution.

10 20 30 40 50
10−3

10−2

10−1

100

101

102
%

×102

(d) Road Traversal Distribution.

Fig. 14. Mobike Trip Characteristics.

After that, we provide experiment results with different pa-
rameters. Based on the recommendation results, we present
a set of real case studies to demonstrate the effectiveness of
our system. We also present our online deployed system at
the end of this section.

6.1 Datasets

Road Network. We use the road network of Shanghai,
China from Bing Map, which contains 333, 766 intersections
and 440, 922 road segments.

Mobike Trajectories. Each Mobike trajectory contains a bike
ID, a user ID, a temporal range of the trajectory, a pair of
start/end locations, and a sequence of intermediate GPS
points.

The Mobike dataset is collected in one month (i.e.,
09/01/ 2016 - 09/30/2016) from the city of Shanghai. (Fig-
ure 8 gives an overview of the spatial distribution of GPS
locations). The dataset contains 13,063 unique users, 3,971
bikes, and 230,303 trajectories (with a total of 18,039,283
unique GPS points).

6.2 Mobility Statistics of Mobike Data

Trip Length Distribution. Figure 14(a) summarizes the trip
lengths distribution of the Mobike users. From the figure,
it is clear that the majority of the trajectories are relatively
short, i.e., more than 70% of the trips are shorter than 2
km, as people primarily take bikes for shorter trips. The
observation is consistent with the assumption that shared
bike service is the solution for the “last mile problem” in
public transportation systems [24].

Trip Duration Distribution. Figure 14(b) gives the trajectory
duration distribution, where the majority of the trips are
within 30 mins. This is because: 1) most of the trips are less
than 2 km, which should be completed within 15 mins, and
2) the pricing plan of Mobike charges a user one RMB per
30 mins (we also notice a sudden drop around the 30 min
mark).

Trip Temporal Distribution. Figure 14(c) illustrates the
distribution of the trip start time. It is obvious that there
are two usage peaks, i.e., the morning/evening rush hours.
It is interesting to see there is still a small amount of usage

Subway
Station

Subway
Station

Residential
Areas

(a) 6:00AM–8:00AM (b) 8:00AM-10:00AM

Residential
Areas

OfficesOffices

Fig. 15. Temporal Imbalance Example of Mobike Trips.

10 20 30 40 50
0

10
20
30
40
50
60

T
im

e
 C
o
st
 (
s)

Naive

Impr

Storm+Impr

(a) Solutions and Budgets(KM).

2 4 6 8 10
5.5

6.0

6.5

7.0

7.5

T
im

e
 C
o
st
 (
s)

(b) Different Workers Numbers.

1 2 4 6 8 10

4

5

6

7

8

9

T
im

e
 C
o
st
 (
s)

2 workers

4 workers

8 workers

(c) Different k Values.

1 2 3 4
3
4
5
6
7
8
9

10

T
im

e
 C
o
st
 (
s)

2 workers

4 workers

8 workers

(d) Different Data Sizes (week).

Fig. 16. Efficiency Study.

late at night, i.e., 10:00PM - 3:00AM, which is generated by
the overtime workers.

Road Traversal Distribution. Figure 14(d) depicts the road
segment distribution with respect to the number of tra-
versed trajectories (in semi-log scale). It is obvious that most
road segments are covered by less than 100 trajectories,
which echoes that bikers have destinations all over the
urban area. On the other hand, there are over 2,000 road
segments, with more than 1,000 trajectories, which validate
the necessity of planning effective bike lanes.

Temporal Imbalance. Figure 15 gives the Mobike trajectory
starting locations at different time periods, which exhibits
significant temporal imbalance. For example, in the early
morning, i.e., Figure 15(a), more trajectories start at the
residential areas. However, around 08:00 a.m. to 10:00 a.m,
more trips start at the subway station (as Figure 15(b)). After
we analyze their final destinations, it is clear that in the early
morning, people who live nearby ride bikes to the subway
stations for work. Then, after one hour, more people arrive
at the subway station and ride to nearby malls and offices.

6.3 Efficiency Evaluation

To evaluate the efficiency of our system (Figure 16), we
conduct extensive experiments to study the impact of 4
factors to the execution time, including: the comparison of
different solution framworks, the number of Storm workers,
the number of components, and the trajectory data size.
Unless specified explicitly, the default settings are: k = 6,
budget B = 30KM (we use the length of the segment as the

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

1 3 5 7 9
60

65

70

75

80
B
e
n
if
ic
ia
l
S
co

re

×106

Top K

Cluster

(a) Different k Values.

10 20 30 40 50
20

40

60

80

100 ×106

Top K

Cluster

(b) Different Total Budgets.

Fig. 17. Effectiveness Evaluation.

cost ei.c, as the cost and the length are highly correlated), 3
weeks of trajectory data, 8 workers and α = 1.0.

Different Solution Frameworks. Figure 16(a) compares the
efficiency of different solution frameworks under different
total budgets. The frameworks under comparison are brute-
force score computing(Naive), the improved score comput-
ing algorithm on a single machine (Impr), and the improved
algorithm on Storm cluster (Impr+Storm). The budget varies
from 10 KM to 50 KM. From the figure, we make the
following observations: 1) the time cost grows with the
budget. The reason is that, when the budget is large, the
expansion can introduce many expansion iterations; 2) the
proposed efficient score computing algorithm cuts down
the time cost significantly; 3) Storm based system beats
the single machine based one when the budget becomes
large. This is because, Storm distributes the candidates to
its workers, so that the score can be computed in parallel.

Different Storm Worker Numbers. Figure 16(b) presents
the execution time under different worker numbers from 2
to 10, where we get 2 observations: 1) as the worker num-
ber increases from 2 to 4, the execution time drops down
significantly, due to the increase of parallelism; 2) while the
worker number increases from 4 to 10, however, the system
slows down, since the internal communication time rises.
It implies the necessity to make tradeoff between internal
communication time and parallelism.

Different k Values. We also investigate the influence of the
component number to the execution time. From Figure 16(c),
we can observe that the time cost varies with k, however,
without an explicit correlation. This is because that, different
k values would introduce different numbers of candidates
during each expansion iteration, and it’s possible that larger
k introduces instead less candidates to compute.

Different Trajectory Data Size. Figure 16(d) gives the cor-
relation of time cost to the trajectory data size. The figure
indicates that the time cost grows almost in linear with the
data size, just as is analyzed in Section 5.1. In addition, we
observe that when the data size is small, i.e. one week of
trajectories, 2-workers is the most efficient setting, while as
the data size increases from 2 to 4 weeks, the system with 4
workers outperforms others, which achieves a good tradeoff
between parallelism and communication time cost.

6.4 Effectiveness Studies

In this subsection, we study the effects of different pa-
rameters in our system. Note that we didn’t compare the
effectiveness with other works([8], [9], [10]) because of the
differences in constraints and optimization target. Unless

VWX YZ[\]^[_`^a bcd VeX YZ[\]^[_`^a bcdfgh

ijklj
imnompjq

rstus
rvwxvysz

Fig. 18. Effects of α Values.

mentioned explicitly, the default parameters used in the ex-
periments are: k = 5, total construction budget B = 30KM

and α = 1.

Different k Values. Figure 17(a) gives the total beneficial
scores E′.g of choosing different numbers of components
(i.e., k values). As a result, we have the following insight:
1) in most cases, the spatial clustering-based initialization
method gets a higher score; 2) the scores for Top-k method
stays the same for k < 7, as all the top-7 segments are
connected; 3) when k value is small, two methods are
similar. This is because in these cases the starting segments
of clustering results are the same as the top-k.

Different Total Budgets. Figure 17(b) illustrates the total
scores with different total budgets, from 10 KM to 50 KM.
From the figure, we make the following observations: 1) the
spatial clustering-based initialization method performs bet-
ter when the budget is larger. 2) when the budget is small,
top-k method is better than spatial clustering based method.
This is because, when the budget is small, the best strategy
may be expanding the segment with the most number
of trajectories (essentially the intuition of top-k method).
However, when the budget is large, the segments with high
scores per cost around the top-1 or top-2 ranked segments
can be fully covered (as most bike trajectories is less than 2
KM). At this time, a more effective way should include the
segments around other spatial hot spots, rather than still
expanding around that top-1 or top-2 ranked segments.

Different α Values. Figure 18 provides the results with dif-
ferent α settings, with the spatial clustering based method,
where the red lines are recommended paths and the black
dots are their start segments. It is interesting that, when α

is large, most of the network expansions happened in one
connected component. Moreover, with a higher α, the result
of the expansion goes further on some major roads. The
reason behind these two phenomena is that, when α is large,
higher beneficial scores are given for covering more portion
of the bike trajectories.

6.5 Case Study

To better understand the effectiveness of our bike lane
recommendations, we conduct a field case study. We choose
to visit the area near Jinyun Road subway station, as this
area appears in all of our recommendations, regardless of
the parameters.

Figure 19(c) gives an overview of the overall POI dis-
tribution of the area: 1) Jinyun Road is the terminal sta-
tion of subway line 13, 2) there is a very large shopping
mall (Shanghai Jiangqiao Wanda Plaza) next to the subway

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

{|} ~��|�� ��|� {���|� ��|�}

{�} ~�|��|�� ��|� {�|��� ��|�}

{�} ���� �|�� ��|����� ��|� ������ ��|� {�} �����|��|������ {�|��� ��|�}

{�} ��|�� ��|� {���|� ��|�}

������ ��|�

��|����

�|��|

��|�|

Fig. 19. A Real Case Study Near Jinyun Road Station.

station; and 3) around the subway station, there are many
populated residential areas within a 2 km radius, marked as
the blue icons on the figure. As a result, cycling is the most
convenient way for the residents in this area to go to the
subway station or the shopping mall, which explains this
area having the highest bike usage density in our dataset.

When we arrive at the Jinyun Road station, we discover
that the government has built a few designated bike lanes.
Based on our observation, the government plans these bike
lanes with a simple strategy: building designated bike lanes
for all major roads, and painting bike lanes for the most of
the local roads.

For example, the major roads in the figure have desig-
nated bike lanes, which are the Jinshajiang West Road (i.e.,
highlighted in blue) and Huajiang Road (i.e., highlighted in
green), as shown in our photos: (Figure 19(b) for Huajiang
Road and Figure 19(d) for Jinshajiang West Road). These
observations demonstrate the effectiveness of our system,
as all of these major roads are included in our bike lane
recommendation results.

On the other hand, there are no designated bike lane
on local roads, e.g., Hewang Road (Figure 19(a)) and Shahe
Road (Figure 19(e)). However, we observe that there is also
extensive bike usage on these roads, as they are the paths
to highly populated residential areas. Although there are
painted bike lanes on the road, the cycling conditions are
pretty bad. In Figure 19(a), the bike users have to ride on the
sidewalk, as the original bike lane is taken by a parked car.
As a consequence, it not only makes the cycling experience
much worse, but also is potentially dangerous for people
walking or running on the sidewalk. In the other example,
i.e., Figure 19(e), at Shahe Road, the bike users are forced
to ride on the main lane of the road, as all the space of
the biking path is taken by cars, which may lead to traffic
accidents.

As a result, based on our analysis, we conclude that
the government’s current strategy, i.e., building bike lanes
only on major roads, is insufficient. With the real bike
trajectories and data-driven analysis, we propose that the
cycling conditions in these local road segments in our
recommendation should be improved. For example, the
government should build designated bike lanes, replace off-
street parking spaces with (underground) parking garages,
and enforce better management of illegal parking.

6.6 System Deployment

Our bike lane planning system is publicly available on-
line [15], where the website user interface is implemented
using bootstrap, C#, Asp.NET and Bing Map V8 API, and
the system is deployed on Microsoft Azure. The system
allows users to interact with it using different parameters,
and get bike lane construction recommendations in a short
time.

Experts’ Review. We presented our system to the govern-
ment officials from Xuhui District, Shanghai, and collected
their feedback. Overall, they highly appreciated our data-
driven bike path planning approach and found the system
is very useful to help their planning. One of the officials
commended: “ The idea of using the real sharing bike
trajectories for planning the bike lanes is very reasonable.
The data mining results from the system will serve as a
very solid foundation for our urban planners to build more
effective bike lanes in Shanghai”.

7 RELATED WORK

Data-Driven Urban Planning. With the availability of

massive amounts mobility data from users, vehicles and
public transportation systems, urban computing techniques
have become more and more popular in many urban plan-
ning tasks, as the massive mobility data reflects real travel
demands in the physical world [25]. For example, [26]
mines patterns in taxi trajectories to suggest road construc-
tions and public transportation projects. [27] infers different
function zones in a city based on traffic patterns and POI
distribution. [28], [29] identify potential traffic patterns and
anomalies in the city based on multiple mobility datasets. In
this paper, we focus on providing a data-driven approach
to find a more effective and economic way for bike lane
planning.

Trajectory Data Mining. The bike lane planning problem
is related to the trajectory data mining [30], [31], [32], [33],
[34], [35], [36], [37]. Many systems have been proposed to
discover frequently used routes based on massive trajectory
data, e.g., [30], [31], [32], [33], [37], [38]. There are also some
projects on clustering/summarizing trajectories on the road
network [39], [40], which help urban planners to know the
popular routes and improve public transportation system.
The closest projects on bike trajectory mining are [8], [9],

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[10], which focus on summarizing the trajectory common-
ality and find out the K-Primary Corridors for bike lanes.
However, all of these works can not be directly used for bike
lane planning, as they fail to consider the realistic budget
and connectivity constraints.

Traditional Bike Lane Planning. Traditional bike lane plan-
ning in a city is mainly studied in the transportation do-
main, and relies heavily on the empirical experience, e.g.,
[7], [41]. To evaluate the necessity of building bike lanes, [6],
[42] provide some high level suggestions based on public
surveys and the statistics, such as the road network and
POI distributions. There have been some attempts [5] to
systematically discover factors for actual bike route choices
based on survey data. Recently, there have also been some
works on traffic predication and route suggestion based on
the station-based bike-sharing systems, e.g., [43], [44].

8 CONCLUSION

In this paper, we propose a data driven approach to plan
bike lanes based on the bike trajectories collected from Mo-
bike (a major station-less bike sharing system) in Shanghai.
Our system can address the bike lanes planning problem
in a more realistic way, considering the constraints and
requirements from urban planners’ perspective: 1) budget,
2) construction convenience, and 3) utilization. We also pro-
pose a flexible beneficial score function to adjust preferences
between the number of covered users and the length of
covered trips. The formulated problem is proven to be NP-
hard, thus we propose a greedy network expansion algorithm
with spatial clustering. In addition, to improve the efficiency
and scalability of the system, we propose a novel trajectory
index structure and deploy the system on the cloud.

We perform extensive experiments on a large-scale Mo-
bike dataset and demonstrate the efficiency and effective-
ness of our system. We observe that the proposed trajectory
score index with Storm significantly improves the efficiency
and scalability of the system. We also conduct an on-field
case study based on our path recommendation results, and
present many important insights to improve cycling conve-
nience in a given area. A demonstration system is deployed
for public use, and the expert feedback from the govern-
ment officials from Xuhui District, Shanghai, confirms the
effectiveness and usability of our system.

REFERENCES

[1] “Transport minister encourages people to
get on their bike for cycle to work day,”
https://www.gov.uk/government/news/transport-minister-
encourages-people-to-get-on-their-bike-for-cycle-to-work-day,
2015.

[2] X. Zhu, “Bike sharing schemes promote green trans-
port,” http://www.telegraph.co.uk/news/world/china-
watch/technology/sharing-bikes-to-promote-green-transport/,
2016.

[3] D. Rojas-Rueda, A. De Nazelle, O. Teixidó, and M. Nieuwenhui-
jsen, “Replacing car trips by increasing bike and public transport
in the greater barcelona metropolitan area: a health impact assess-
ment study,” Environment international, vol. 49, pp. 100–109, 2012.

[4] J. Pucker, “Cycling safety on bikeways vs. roads.” Transportation
Quarterly, vol. 55, no. 4, pp. 9–11, 2001.

[5] T. Hyodo, N. Suzuki, and K. Takahashi, “Modeling of bicycle route
and destination choice behavior for bicycle road network plan,”
JTRB, no. 1705, pp. 70–76, 2000.

[6] G. Rybarczyk and C. Wu, “Bicycle facility planning using gis and
multi-criteria decision analysis,” Applied Geography, 2010.

[7] G. French, J. Steer, and N. Richardson, “Handbook for cycle-
friendly design,” https://goo.gl/m3DwoY, 2014.

[8] M. R. Evans, D. Oliver, S. Shekhar, and F. Harvey, “Summarizing
trajectories into k-primary corridors: a summary of results,” in
SIGSPATIAL GIS. ACM, 2012, pp. 454–457.

[9] ——, “Fast and exact network trajectory similarity computation:
a case-study on bicycle corridor planning,” in UrbComp. ACM,
2013, p. 9.

[10] Z. Jiang, M. Evans, D. Oliver, and S. Shekhar, “Identifying k
primary corridors from urban bicycle gps trajectories on a road
network,” Information Systems, vol. 57, pp. 142–159, 2016.

[11] J. Odeck, “Cost overruns in road construction—what are their
sizes and determinants?” Transport policy, 2004.

[12] W. Chung, J. Stückelberger, K. Aruga, and T. W. Cundy, “Forest
road network design using a trade-off analysis between skidding
and road construction costs,” Canadian journal of forest research,
vol. 38, no. 3, pp. 439–448, 2008.

[13] J. Russell, “Meet Mobike, a billion-dollar bike-sharing startup
from China,” https://techcrunch.com/2017/07/12/chinese-bike-
sharing-startup-mobike/, 2017.

[14] J. Bao, T. He, S. Ruan, Y. Li, and Y. Zheng, “Planning bike lanes
based on sharing-bikes’ trajectories,” in SIGKDD. ACM, 2017, pp.
1377–1386.

[15] “Urbanbike system,” http://urbanbike.chinacloudsites.cn/, 2017.
[16] Y. Zheng, “Trajectory data mining: an overview,” TIST, vol. 6,

no. 3, p. 29, 2015.
[17] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun, “An interactive-

voting based map matching algorithm,” in MDM. IEEE Com-
puter Society, 2010, pp. 43–52.

[18] J. Bao, R. Li, X. Yi, and Y. Zheng, “Managing massive trajectories
on the cloud,” in SIGSPATIAL GIS. ACM, 2016, p. 41.

[19] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query process-
ing in spatial network databases,” in VLDB. VLDB Endowment,
2003, pp. 802–813.

[20] J. Bao, C.-Y. Chow, M. F. Mokbel, and W.-S. Ku, “Efficient eval-
uation of k-range nearest neighbor queries in road networks,” in
MDM. IEEE, 2010, pp. 115–124.

[21] J. H. Ward Jr, “Hierarchical grouping to optimize an objective
function,” Journal of the American statistical association, vol. 58, no.
301, pp. 236–244, 1963.

[22] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in KDD, vol. 96, no. 34, 1996, pp. 226–231.

[23] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[24] P. DeMaio, “Bike-sharing: History, impacts, models of provision,
and future,” JPT, vol. 12, no. 4, p. 3, 2009.

[25] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” TIST, vol. 5, no. 3,
p. 38, 2014.

[26] Y. Zheng, Y. Liu, J. Yuan, and X. Xie, “Urban computing with taxi-
cabs,” in Proceedings of the 13th international conference on Ubiquitous
computing. ACM, 2011, pp. 89–98.

[27] J. Yuan, Y. Zheng, and X. Xie, “Discovering regions of different
functions in a city using human mobility and pois,” in SIGKDD.
ACM, 2012, pp. 186–194.

[28] S. Chawla, Y. Zheng, and J. Hu, “Inferring the root cause in road
traffic anomalies,” in ICDM. IEEE, 2012, pp. 141–150.

[29] L. Hong, Y. Zheng, D. Yung, J. Shang, and L. Zou, “Detecting
urban black holes based on human mobility data,” in SIGSPATIAL
GIS. ACM, 2015, p. 35.

[30] X. Li, J. Han, J.-G. Lee, and H. Gonzalez, “Traffic density-based dis-
covery of hot routes in road networks,” in International Symposium
on Spatial and Temporal Databases. Springer, 2007, pp. 441–459.

[31] Z. Chen, H. T. Shen, and X. Zhou, “Discovering popular routes
from trajectories,” in ICDE. IEEE, 2011, pp. 900–911.

[32] W. Luo, H. Tan, L. Chen, and L. M. Ni, “Finding time period-based
most frequent path in big trajectory data,” in SIGMOD. ACM,
2013, pp. 713–724.

[33] D. Oliver, S. Shekhar, X. Zhou, E. Eftelioglu, M. R. Evans,
Q. Zhuang, J. M. Kang, R. Laubscher, and C. Farah, “Significant
route discovery: A summary of results,” in International Conference
on Geographic Information Science. Springer, 2014, pp. 284–300.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2907091, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[34] D. Liu, D. Weng, Y. Li, J. Bao, Y. Zheng, H. Qu, and Y. Wu,
“Smartadp: Visual analytics of large-scale taxi trajectories for
selecting billboard locations,” IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 1, pp. 1–10, 2017.

[35] Y. Li, J. Bao, Y. Li, Y. Wu, Z. Gong, and Y. Zheng, “Mining
the most influential k-location set from massive trajectories,” in
SIGSPATIAL GIS. ACM, 2016, p. 51.

[36] G. Wu, Y. Ding, Y. Li, J. Bao, Y. Zheng, and J. Luo, “Mining spatio-
temporal reachable regions over massive trajectory data,” in ICDE,
2017, pp. 1–12.

[37] A. M. Hendawi, J. Bao, M. F. Mokbel, and M. Ali, “Predictive tree:
An efficient index for predictive queries on road networks,” in
ICDE. IEEE, 2015, pp. 1215–1226.

[38] A. M. Hendawi, J. Bao, and M. F. Mokbel, “iroad: a framework for
scalable predictive query processing on road networks,” Proceed-
ings of the VLDB Endowment, vol. 6, no. 12, pp. 1262–1265, 2013.

[39] A. Kharrat, I. S. Popa, K. Zeitouni, and S. Faiz, “Clustering algo-
rithm for network constraint trajectories,” in Headway in Spatial
Data Handling. Springer, 2008, pp. 631–647.

[40] B. Han, L. Liu, and E. Omiecinski, “Neat: Road network aware
trajectory clustering,” in ICDCS. IEEE, 2012, pp. 142–151.

[41] J. Dill and K. Voros, “Factors affecting bicycling demand: initial
survey findings from the portland, oregon, region,” JTRB, no. 2031,
pp. 9–17, 2007.

[42] K. M. Parker, J. Rice, J. Gustat, J. Ruley, A. Spriggs, and C. Johnson,
“Effect of bike lane infrastructure improvements on ridership
in one new orleans neighborhood,” Annals of behavioral medicine,
vol. 45, no. 1, pp. 101–107, 2013.

[43] Y. Li, Y. Zheng, H. Zhang, and L. Chen, “Traffic prediction in a
bike-sharing system,” in SIGSPATIAL GIS. ACM, 2015, p. 33.

[44] J. Liu, L. Sun, W. Chen, and H. Xiong, “Rebalancing bike sharing
systems: A multi-source data smart optimization,” in SIGKDD.
ACM, 2016, pp. 1005–1014.

Tianfu He Tianfu He is a Ph.D. student in School
of Computer Science, Harbin Institute of Tech-
nology. Before that he recieved the B.E degeree
from Harbin Institute of Technology. His cur-
rent research interest involves urban comput-
ing, spatio-temporal data management and data
mining, especially trajectory data mining.

Jie Bao Jie Bao got his Ph.D degree in Com-
puter Science from University of Minnesota at
Twin Cities in 2014. He worked as a researcher
in Urban Computing Group at MSR Asia from
2014 to 2017. He currently leads the Data
Platform Division in Urban Computing Business
Unit, JD Finance. His research interests include:
Spatio-temporal Data Management/Mining, Ur-
ban Computing, and Location-based Services.

Sijie Ruan Sijie Ruan is a year one Ph.D.
candidate in the School of Computer Science
and Technology, Xidian University. He received
his B.E. degree from Xidian University in 2017.
His research interests include urban computing,
spatio-temporal data mining, and distributed sys-
tems. He was an intern in MSR Asia from 2016
to 2017. He is now a research intern in Urban
Computing Business Unit, JD Finance, under the
supervision of Prof. Yu Zheng and Dr. Jie Bao.

Ruiyuan Li Ruiyuan Li is a Ph.D. student at the
School of Computer Science and Technology,
Xidian University, China. He received his B.E.
degree and M.S. degree from Wuhan University,
Hubei, China in 2013 and 2016, respectively. His
research focuses on Urban Computing, Spatio-
temporal Data Management on the Cloud, and
Distributed Computing. He is now an intern stu-
dent in Urban Computing Lab, JD Group, China,
under the supervision of Prof. Yu Zheng and Dr.
Jie Bao.

Yanhua Li Yanhua Li (S’09-M’13-SM’16) re-
ceived two Ph.D. degrees in electrical engineer-
ing from Beijing University of Posts and Telecom-
munications, Beijing in China in 2009 and in
computer science from University of Minnesota
at Twin Cities in 2013, respectively. He has
worked as a researcher in HUAWEI Noah’s Ark
LAB at Hong Kong from Aug 2013 to Dec 2014,
and has interned in Bell Labs in New Jersey,
Microsoft Research Asia, and HUAWEI research
labs of America from 2011 to 2013. He is cur-

rently an Assistant Professor in the Department of Computer Science
at Worcester Polytechnic Institute (WPI) in Worcester, MA. His research
interests are big data analytics and urban computing in many contexts,
including urban network data analytics and management, urban plan-
ning and optimization.

Hui He Hui He is currently an Associate Pro-
fessor in the School of Computer Science and
Technology, Harbin Institute of Technology. She
is a member of the IEEE, ACM and CCF. She
conducts research in network and information
technology, big data processing and analysis
and mobile network computing. She has pub-
lished over fifty papers. She has accomplished
many projects such as National High Technol-
ogy Research and National Science Foundation
Projects.

Yu Zheng Dr. Yu Zheng is the Vice President
and Chief Data Scientist at JD Finance, passion-
ate about using big data and AI technology to
tackle urban challenges. He is the president of
the Urban Computing Business Unit and serves
as the director of the Urban Computing Lab at
JD Group. Before Joining JD Finance, he was a
senior research manager at Microsoft Research.
Zheng is also a Chair Professor at Shanghai
Jiao Tong University, an Adjunct Professor at
Hong Kong University of Science and Technol-

ogy. Zheng currently serves as the Editor-in-Chief of ACM Transactions
on Intelligent Systems and Technology and has served as chair on
over 10 prestigious international conferences, e.g. as the program co-
chair of ICDE 2014 (Industrial Track) and CIKM 2017 (Industrial Track).
In 2013, he was named one of the Top Innovators under 35 by MIT
Technology Review (TR35) and featured by Time Magazine for his
research on urban computing. In 2014, he was named one of the Top 40
Business Elites under 40 in China by Fortune Magazine. In 2017, Zheng
is honored as an ACM Distinguished Scientist.

